T.Y.B.SC. SEM - V (CBCS - 2016 Course) : SUMMER - 2019

SUBJECT: PHYSICS - MATHEMATICAL METHODS IN PHYSICS

Wednesday Time 11.00 A.M. To 02.00 P.M. Day 10/04/2019 Date Max. marks: 60 S-2019-0855 N.B. All questions are COMPULSORY. 1) 2) Figures to the RIGHT indicate FULL marks. 3) Draw neat diagram WHEREVER necessary. **Q 1.** Attempt any **Two** of the following. (12)Obtain unit vectors in cylindrical co-ordinates in terms of Cartesian co -ordinate Solve by series solution method around x=0 of the differential equation (b) $2x^2y'' - xy' + (x - 5)y = 0$ Represent $\vec{A} = y\hat{\imath} - z\hat{\jmath} + x\hat{k}$ in spherical polar co-ordinate. Hence calculate A_r , A_θ , A_{ϕ} Q 2. Attempt any Two of the following. (12)(a) Separate the variable in three dimensional Helmholtz equation in Cartesian $\nabla^2 \varphi + k \varphi = 0$ co-ordinate Show that $x = \infty$ is an essential singular of the differential equation $x^2y'' + xy' + (x^2 - n^2) = 0$ $P'_{n+1}(x) - P'_{n-1}(x) = 2xP'_{n}(x) + P_{n}(x)$ **Q 3.** Attempt any **Two** of the following. (12)(a) Explain Michelson Morley experiment **(b)** In spherical polar co-ordinate system $x = rsin\theta sin\emptyset$, $y = rsin\theta cos\emptyset$, $z = rcos\theta$ $\partial \bar{r}$ $\partial \bar{r}$ $\partial \bar{r}$ verify the mutual orthogonality of $\frac{\overline{\partial r}}{\partial r}$, $\frac{\overline{\partial \theta}}{\partial \theta}$, $\frac{\overline{\partial \theta}}{\partial \theta}$ (c) Explain length contraction on the basis of Lorentz transformation Attempt any **Three** of the following. (12)(a) Find the work required to increase speed of electron from 1.5×10^8 to 2.7×10^8 **(b)** Prove that spherical polar co-ordinate system is orthogonal. Using the generating function of Hermite points $g(x,t) = e^{2x-t^2} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$ Find the values of $H_0(x)$, $H_1(x)$, $H_2(x)$. Show that square of length element in spherical polar co-ordinate is $dl^2 = dr^2 + (r\sin\theta d\emptyset)^2$ Attempt any Four of the following. (12)The rest mass of electron is 9.1×10^{-31} kg. What will be its mass if it were moving with $(4/5)^{th}$ times the speed of light. A certain particle has lifetime of 10⁻⁷ sec when measured at rest. How far does it go before decaying, if its speed is 0.99C when it is created. Prove that i) $P_n(1) = 1$ ii) $P_n(-1) = (-1)^n$ (c) Draw neat labeled diagram of volume element in spherical polar co-ordinates Write the transformation equation in cylindrical co-ordinates in terms of Cartesian co-ordinates. Define degree and order of differential equation.