S.Y.B.SC. SEM – IV (2014 Course): SUMMER - 2019 SUBJECT: MATHEMATICS: VECTOR CALCULUS (M-41)

Day : Wednesday

Time 03.00 PM TO 05.00 PM

Date : 08/05/2019

S-2019-0986

Max. Marks: 40

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- **Q.1** Attempt any **TWO** of the following:

(10)

- a) Prove that a non-constant vector function $\vec{u}(t)$ is of constant direction if and only if $\vec{u} \times \frac{d\vec{u}}{dt} = \vec{0}$.
- **b)** If $\vec{r} = x \cos y \hat{i} + x \sin y \hat{j} + c \log \left[x + \sqrt{x^2 c^2} \right] \hat{k}$, find the unit vector perpendicular to both $\frac{\partial \vec{r}}{\partial x}$ and $\frac{\partial \vec{r}}{\partial y}$ such that $\frac{\partial \vec{r}}{\partial x}$, $\frac{\partial \vec{r}}{\partial y}$ and unit vector form a right handed system.
- c) Find the angle between the surfaces $x^2y + z = 3$ and $x \log z y^2 + 4 = 0$ at the point (-1, 2, 1).
- **Q.2** Attempt any **TWO** of the following:

(10)

- a) If \vec{u} is a vector point function and ϕ is a scalar point function then show that $\nabla \cdot (\phi \vec{u}) = (\nabla \phi) \cdot \vec{u} + \phi (\nabla \cdot \vec{u})$.
- **b)** Find the directional derivative of $x^2y + xz^2 2$ at A(1,1,-1) along \overrightarrow{AB} , where B(2,-1,3).
- c) If $\overline{f} = z\hat{i} + x\hat{j} 3y^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5, evaluate $\iint_0^{\infty} \overline{f \cdot n} \, dS$.
- **Q.3** Attempt any **TWO** of the following:

(10)

- a) Let \overline{f} be a continuously differentiable vector field on a region R. Then show that \overline{f} is conservative if and only if it is the gradient of some scalar point function ϕ defined on R.
- b) Using Green's theorem evaluate $\oint_C [(y \sin x)dx + \cos x dy]$, where C is perimeter of the triangle with vertices O(0,0), $A\left(\frac{\pi}{2},0\right)$ and $B\left(\frac{\pi}{2},1\right)$.
- Prove by using Stoke's theorem that $\int_C (\sin z \, dx \cos x \, dy + \sin y \, dz) = 2, \quad \text{where C is the boundary of the rectangle } 0 \le x \le \pi, \ 0 \le y \le 1; \ z = 3.$

a) If
$$\vec{r} = (t^2 + 1)\hat{i} + (4t - 3)\hat{j} + (2t^2 - 6t)\hat{k}$$
 then find $\left| \frac{d^2 \vec{r}}{dt^2} \right|$ at $t = 2$.

- b) Find the equations of the normal line to the surface xy + yz + zx = 7 at (1,1,3)
- c) Prove that $\nabla \cdot (r^n r) = (3+n)r^n$.
- **d)** Prove that curl $(grad \phi) = \overline{0}$.

e) If
$$\overline{f}(t) = (t - t^2)\hat{i} + 2t^3\hat{j} - 3\hat{k}$$
; find $\int_{1}^{2} \overline{f}(t) dt$.

- f) Define gradient of scalar point function.
- g) State Gauss's Divergence theorem.

* * *