F.Y.B.SC. SEM – I (2014 Course): SUMMER - 2019 SUBJECT: MATHEMATICS: CALCULUS

Day : Friday Time : 12.00 NOON TO 02.00 PM

Date : 03/05/2019 S-2019-0948 Max. Marks : 40

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- **Q.1** Attempt **ANY TWO** of the following:

[10]

- a) Prove that every continuous function on closed and bounded interval is bounded.
- **b)** Discuss the continuity of $f(x) = \sqrt{\frac{x-2}{x+4}}$.
- c) If $y = a\cos(logx) + b\sin(logx)$, then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
- Q.2 Attempt ANY TWO of the following:

[10]

- a) State and prove Rolle's mean value theorem.
- **b)** Verify Lagrange's mean value theorem for the function $f(x) = 2x^2 7x + 10$, over [2, 5]. Find the value of c and θ .
- c) Verify Cauchy's mean value theorem for the functions $f(x) = e^x$ and g(x) = x over [0, 1].
- Q.3 Attempt ANY TWO of the following:

[10]

- a) Show that a sequence $\{S_n\}$ where $S_n = \left(1 + \frac{1}{n}\right)^n$ is monotonic and bounded.
- **b)** Discuss the convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$.
- e) Using Taylor's theorem prove that $e^x \cos x = 1 + x \frac{x^3}{3} \frac{x^4}{6} \frac{x^5}{30} + \dots$
- Q.4 Attempt ANY FIVE of the following:

[10]

- a) Define supremum and infinium of a function.
- **b)** Show that the function f defined by f(x) = |x| is continuous but not differentiable.
- c) Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{\log(x \pi/2)}{\tan x}$.
- **d)** If $y = x^2 e^{2x}$, find y_n .
- e) If $y = \frac{1}{3x+5} + e^{5x} + \log(3-2x) + 3^{4x}$, find y_n .
- f) Discuss the convergence of sequence $\{a_n\}$ where $a_n = 3n 4$.
- g) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{n!}$.

* * * *