# F.Y.B.Sc. SEM – I (CBCS 2018 COURSE) : SUMMER - 2019 SUBJECT : MATHEMATICS : ALGEBRA

Day : Wednesday Time : 03.00 PM TO 06.00 PM

Date : 24/04/2019 Max. Marks : 60

S-2019-0778

#### N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable CALCULATOR is allowed

### Q.1 Attempt ANY TWO of the following:

[12]

- a) A necessary and sufficient condition for a square matrix A to have the inverse is that A is non-singular i.e.,  $|A| \neq 0$ .
- b) Find the non-singular matrices P and Q such that PAQ is the normal form and  $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

find rank of A, where 
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$
.

c) Verify Cayley – Hamilton theorem for the matrix,

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}.$$

## Q.2 Attempt ANY TWO of the following:

[12]

- a) If a and b are any two integers with  $a \neq 0$  then there exist unique integers q and r such that b = aq + r, where  $0 \le r < |a|$ .
- **b)** Find the g.c.d. of 3587 and 1819 and express it in the form 3587m + 1819n; find the values of m and n.
- c) If  $z_1$  and  $z_2$  are any two complex numbers then show that:

$$\begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$$

ii) 
$$\operatorname{arg}\left(\frac{z_1}{z_2}\right) = \operatorname{arg} z_1 - \operatorname{arg} z_2$$
.

#### Q.3 Attempt ANY TWO of the following:

[12]

- a) State and prove De Moivre's theorem for positive and negative integers.
- **b)** If  $\sin\alpha + \sin\beta + \sin\gamma = 0$  and  $\cos\alpha + \cos\beta + \cos\gamma = 0$  then prove that,  $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0$ ,  $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ .
- c) Let a, b, c, d, x,  $y \in \mathbb{C}$  and if  $a \equiv b \pmod{n}$  and  $c \equiv d \pmod{n}$  then show that,
  - i)  $(a+c) \equiv (b+d) \pmod{n}$
  - ii)  $(ax + cy) \equiv (bx + dy) \pmod{n}$
  - iii)  $ac \equiv bd \pmod{n}$

a) Solve the following system by Gauss elimination method:

$$x + 2y + z = 2$$

$$2x - 3y - 4z = 9$$

$$5z + 4y + 3z = 8$$

- **b)** For any integer x, show that (a, b) = (a, b + ax).
- c) Prove that  $(1+i\sqrt{3})^{-10} = 2^{-11}(-1+i\sqrt{3})$ .
- **d)** Given that  $A = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ , find adj A and verify that A(adj A) = |A| I.
- Q.5 Attempt ANY FOUR of the following:

[12]

- a) Find the modulus and argument of a complex number  $z = \frac{3+i}{2-i}$ .
- **b)** Write in the form x + iy of  $\frac{(\cos \theta + i \sin \theta)^4}{(\cos \theta i \sin \theta)^3}$ .
- c) Explain how to find the solution of non-homogenous system of linear equations of the form AX = B.
- **d)** Find the eigen values of the matrix  $A = \begin{bmatrix} -2 & -1 \\ 5 & 4 \end{bmatrix}$ .
- e) Prove that if a|b and b|c then a|c.
- f) Define: i) greatest common divisor (g.c.d).
  - ii) least common multiple (l.c.m).

\* \* \* \*