F.Y. B. SC. (Computer Science) SEM – I (CBCS - 2016 COURSE) : SUMMER - 2019

SUBJECT :MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Day Date		2/04/2010	ime: 11.00 AM TO 02.00 PM Iax. Marks: 60	
N. B.	:			
	1) 2)	All questions are COMPULSORY . Figures to the right indicate FULL marks.		
Q.1	A)	Select the correct alternatives:	(06)	
	i)	Negation of statement $\exists x [\sim p(x) \land \sim q(x)]$ is		
		a) $\forall x[p(x) \land q(x)]$ b)	$\forall x[p(x)\lor q(x)]$	
		c) $\forall x [\sim p(x) \land \sim q(x)]$ d)	$\forall x [\sim p(x) \lor q(x)]$	
	ii)	The value of $3.8 = $. c) 5	d) None of these	
	iii)			
	шу		x+y+z)+(y+z)	
			$(x+y+z)\cdot(y+z)$	
	iv)	How many different number of ways can 3 digits digits 2, 3, 4? a)27 b) 82 c) 12	number be form using the	
		a)27 b) 82 c) 12	d) 30	
	v)	Which of the following is a non-homogenous recurrence relation:		
	,	_	$a_n = a_{n-1} - a_{n-2}$	
		c) $\sqrt{a_n} + \sqrt{a_{n-1}} + \sqrt{a_{n-2}} = 0$ d)	$a_n \cdot a_{n-1} = 0$	
	vi)	In the bounded lattice which of the following is tru		
		a) $x \lor 1 = 0$ b) $x \lor 0$ c) $x \land 0 = x$ d) $x \land 1$		
	B)	Attempt ALL the following: (0		
	i)	Write negation of the "Some peacocks dance and all elephants sings."		
	ii)	State the inclusion-exclusion principle for three sets. Draw the Hasse diagram for $(D_{20},)$.		
	iii)			
	iv)	Define a linear recurrence relation.		
	v)	Prove the logical equivalence : $p \rightarrow q \equiv (\sim p \lor q)$.		
	vi)	State the Pegion-hole principle.		
Q.2)		Attempt ANY THREE of the following: (12)		
	a) How many ways 8 chocolates and 7 jellys can be distributed among children such that each child want atleast one of each kind?			

b) Test the validity of the following argument: R → C,S → ~ W, R ∨ S,W | — C.
c) Find the Disjunctive Normal Form (DNF) of the following boolean function: f(x, y, z) = x(y+z).
d) Solve the recurrence relation: a_n = -4a_{n-1} - 4a_{n-2}); a₀ = 0, a₁ = 1.

Q.3 Attempt ANY FOUR of the following: (12)

- a) How many different ways can we arrange the word 'MANAGEMENT'?
- **b)** Prove the following logical equivalence: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.
- c) Check whether the poset $(D_{15}, |)$ is lattice or not.
- d) Show that if there are 30 students in a class, then at least two have last names that begin with the same alphabet.
- Find homogenous solution for the recurrence relation: $a_n - a_{n-1} + 20a_{n-2} = 2 \times 5^n$.

- a) State and prove the De-Morgan's laws by using truth tables.
- b) How many different 5-card hands can be formed from the standard 52 card deck and what is the probability of hand containing 3 but not 4 aces?
- c) By using the proof of contradiction prove that $\sqrt{2}$ is irrational.

- a) Solve the Fibonacci relation $a_n = a_{n-1} + a_{n-2}$ with the initial condition $a_0 = 0, a_1 = 1$.
- b) Prove that if $[B, -, \vee, \wedge]$ is a Boolean algebra than the complement a' of any element $a \in B$ is unique.
- c) A committee of 5 members is to be selected from among 6 boys and 5 girls. Determine the number of differnt ways of selecting the committee, if it contains alteast one boy and one girl.

* * * * *