F.Y. B. SC. (Computer Science) SEM – I (CBCS - 2016 COURSE) : SUMMER - 2019

SUBJECT: ALGEBRA – I

Day: Date:		urday 05/2019	S-2019-1073			Time: 11.00 AM TO 02.00 PM Max. Marks: 60	
N.B.:	 All questions are COMPULSORY. Figures to the right indicate FULL marks. 						
Q.1	A)	Select the correct alternative:				(06)	
	1)	Euclid's lemma states if p is a prime integer, $a, b \in \mathbb{Z}$ then $p \mid ab \Rightarrow \underline{\hspace{1cm}}$				_ ·	
		a) p∤a or p∤t)	b) p∤a or	p b		
		c) p a and p.	∤b	d) p a ar	nd p b		
	2)	Least common multiple of (60, 9) is					
		a) 180	b) 120	c) 9 d) 60	0		
	3)	Modulus of complex number is defined as a) $r = \sqrt{x^2 - y^2}$ b) $r = \sqrt{x^2 + y^2}$ c) $r = x^2 + y^2$ d) $r = x^2 - y^2$					
	4)	Real part of $\mathbb{Z} = -8i$ is a) 9 b) -8 c) 0 d) none of these					
	5)	If $R = \phi$ then R is known as					
		a) void relation	1	b) universa	al relation		
		c) identity rela	tion	d) none of	these.		
	6)	The surjective function means a function is					
		a) both one –	one and onto	b) only on			
		c) only one –	one	d) neither	one - one nor onto		
	B)	Attempt all the fol	lowing:			(06)	
	1)	Define partial order relation.					
	2)	Show that a function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = 2^n$ is one-one.					
	3) 4)	Express $z = -1 + 3i$ into polar form. Prepare composition table for (Z_5, X_5)					
	5) 6)	Define relatively p Define parity chec	rime integers.	· · · 5 J			

- a) If $a,b,m \in \mathbb{Z}$ and (a,m) = (b,m) = 1 then (ab,m) = 1
- **b)** Prove that $\sqrt{5}$ is not a rational number.
- c) Find fifth roots of -1.
- d) Expand $\sin 5\theta$ in a series of sines of multiples of θ .

Q.3 Attempt any FOUR of the following:

(12)

- a) Draw the diagraph of the relation R given by aRb if and only if $a+b \le 5$, where $A = \{1,2,3,4,8\} = B$.
- b) If $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = x^2 + 2x + 3$ and g(x) = 2x + 3 respectively then obtain: i) fog ii) gof
- c) Find the minimum distance d for the following code. $C = \{1101, 1001, 1001, 0110, 1110\}$ in \mathbb{Z}_2^4 .
- d) If \mathbb{Z}_{11} is set of residue classes modulo 11, then find the values of $iiint(-2)^5$ iiint(8 + 1) + 7
- e) If |z| = 1 and $\arg z = \theta$ then prove that $\frac{1+z}{1-z} = i \cot \left(\frac{\theta}{2}\right)$.

Q.4 Attempt any TWO of the following:

(12)

- a) State De Moivre's theorem and prove any two cases.
- b) Let $A = \{0,1,2,3\}$ and $R = \{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1),(3,2),(2,3),(3,1),(1,3)\}$. show that R is an equivalence relation on A. Find equivalence class of each element.
- c) Find the matrix of transitive closure for

$$M(R) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 using Warshall's algorithm.

Q.5 Attempt any TWO of the following:

(12)

- a) Find the g.c.d. of 3927 and 377 and express the g.c.d. in the form 3927m + 377n.
- **b)** If $a,b,c,d \in \mathbb{Z}$, $n \in \mathbb{N}$ $a \equiv b \pmod{n} \text{ and } c \equiv d \pmod{n} \text{ then,}$ $S.T. \quad i) (a+c) \equiv (b+d) \pmod{n}$ $ii) (a-c) \equiv (b-d) \pmod{n}$
- c) Construct a decoding table with syndromes for a group code given by generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
. Use the table to decode the received word 11110.

* * * *