F.Y. B. SC. (Computer Science) SEM – I (CBCS 2018 COURSE) : SUMMER - 2019

SUBJECT : ALGEBRA – I

Day :

: Monday : 15/04/2019

S-2019-1054

Time: 03.00 PM To 06.00 PM

Max. Marks: 60

N.B.:

Date

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt **ANY TWO** of the following:

[12]

- a) Prove that R is equivalence relation, if R be a relation of \mathbb{Z} define by xRy if and only if 5x + 6y is divisible by 11 for $x, y \in \mathbb{R}$.
- **b)** Find the matrix of transitive closure for $M(R) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ using

Warshall's algorithm.

- c) If a, b, c, $d \in \mathbb{Z}$, $n \in \mathbb{N}$ and $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ then prove that
 - i) $(a+c) \equiv (b+d) \pmod{n}$
 - ii) $(a-c) \equiv (b-d) \pmod{n}$
 - iii) $ac \equiv bd \pmod{n}$

Q.2 Attempt **ANY TWO** of the following:

[12]

- **a)** If $z_1, z_2 \in \mathbb{C}$ then prove that $\left| \frac{z_1}{z_2} \right| = \left| \frac{z_1}{z_2} \right|$ and $\arg \frac{z_1}{z_2} = \arg z_1 \arg z_2$.
- **b)** Solve the equation $x^7 + 1 = 0$.
- c) State De Moivre's theorem and use it to prove $\cos 4\theta = \cos^4 \theta 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$ $\sin 4\theta = 4\cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$.

Q.3 Attempt **ANY TWO** of the following:

[12]

- a) State and prove Euclid's Lemma.
- **b)** Find the g.c.d. of 3927 and 377 and express the g.c.d in the form 3927m + 377n.
- c) Construct a decoding table with syndromes for a group code given by generator matrix $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$. Use the table to decode the received word 11110.

- a) Let $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2 1$, $g: \mathbb{R} \to \mathbb{R}$ such that $g(x) = \frac{3x 4}{10}$. Obtain gof (x) and fog (x).
- **b)** If (a, m) = (b, m) = 1 then show that (ab, m) = 1.
- c) Find the loci of point z satisfying the relation |z-2| = 2|z-1|.
- d) Find all the code words of the code determined by the parity check matrix, $H = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$

Q.5 Attempt ANY FOUR of the following:

[12]

- a) Find the modulus and argument of $z = \frac{3-i}{2+i} + \frac{3+i}{2-i}$.
- **b)** Prove that $(-1+i)^7 = -8(1+i)$.
- c) Draw the directed graph of relation R on a set $A = \{a, b, c, d, e\}$ is defined as $R = \{(a, a), (a, b), (b, c), (b, d), (c, d), (c, e), (d, b), (d, c), (e, a)\}.$
- d) Obtain the remainder when $4^{37} + 82$ is divided by 7.
- e) Find the minimum distance d for the following code: $C = \{1101, 1001, 0110, 1110\}$ in \mathbb{Z}_2^4 .
- f) Define: i) greatest common divisor (g.c.d)
 - ii) least common multiple (l.c.m)

* * * *